Формули математики
Формули фізики
Пошук
Розрахунки
lbIP2l - 1
Розрахунок: lbIP2l - 1
cos(
α
)
=
(
x1
*
x2
+
y1
*
y2
+
z1
*
z2
)
/
(
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
*
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
)
cos(
α
)
=
(
x1
*
x2
+
y1
*
y2
+
z1
*
z2
)
/
(
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
*
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
)
c
o
s
(
α
)
cos(\alpha)
cos
(
α
)
=
x
1
⋅
x
2
+
y
1
⋅
y
2
+
z
1
⋅
z
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
\frac{x1\cdot x2+y1\cdot y2+z1\cdot z2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
x
1
⋅
x
2
+
y
1
⋅
y
2
+
z
1
⋅
z
2
cos(
α
)
=
x1
*
x2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
+
y1
*
y2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
+
z1
*
z2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
c
o
s
(
α
)
cos(\alpha)
cos
(
α
)
=
x
1
⋅
x
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
+
y
1
⋅
y
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
+
z
1
⋅
z
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
\frac{x1\cdot x2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}+\frac{y1\cdot y2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}+\frac{z1\cdot z2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
x
1
⋅
x
2
+
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
y
1
⋅
y
2
+
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
z
1
⋅
z
2
α
=
arccos(
(
x1
*
x2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
+
y1
*
y2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
+
z1
*
z2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
)
)
α
\alpha
α
=
a
r
c
c
o
s
(
(
x
1
⋅
x
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
+
y
1
⋅
y
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
+
z
1
⋅
z
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
)
)
arccos((\frac{x1\cdot x2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}+\frac{y1\cdot y2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}+\frac{z1\cdot z2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}))
a
rccos
((
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
x
1
⋅
x
2
+
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
y
1
⋅
y
2
+
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
z
1
⋅
z
2
))
α
=
arccos(
x1
*
x2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
+
y1
*
y2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
+
z1
*
z2
/
saknis(
x1
^
2
+
y1
^
2
+
z1
^
2
)
/
saknis(
x2
^
2
+
y2
^
2
+
z2
^
2
)
)
α
\alpha
α
=
a
r
c
c
o
s
(
x
1
⋅
x
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
+
y
1
⋅
y
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
+
z
1
⋅
z
2
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
)
arccos(\frac{x1\cdot x2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}+\frac{y1\cdot y2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}}+\frac{z1\cdot z2}{\sqrt {x1^{2}+y1^{2}+z1^{2}}\cdot \sqrt {x2^{2}+y2^{2}+z2^{2}}})
a
rccos
(
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
x
1
⋅
x
2
+
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
y
1
⋅
y
2
+
x
1
2
+
y
1
2
+
z
1
2
⋅
x
2
2
+
y
2
2
+
z
2
2
z
1
⋅
z
2
)